Channel Modelling for Free-Space Optical Inter-HAP Links Using Adaptive ARQ Transmission
نویسندگان
چکیده
Free-space optical (FSO) communication systems have seen significant developments in recent years due to growing need for very high data rates and tap-proof communication. The operation of an FSO link is suited to diverse variety of applications such as satellites, High Altitude Platforms (HAPs), Unmanned Aerial Vehicles (UAVs), aircrafts, ground stations and other areas involving both civil and military situations. FSO communication systems face challenges due to different effects of the atmospheric channel. FSO channel primarily suffers from scintillation effects due to Index of Refraction Turbulence (IRT). In addition, acquisition and pointing becomes more difficult because of the high directivity of the transmitted beam: Miss-pointing of the transmitted beam and tracking errors at the receiver generate additional fading of the optical signal. High Altitude Platforms (HAPs) are quasi-stationary vehicles operating in the stratosphere. The slowly varying but precisely determined time-of-flight of the Inter-HAP channel adds to its characteristics. To propose a suitable ARQ scheme, proper theoretical understanding of the optical atmospheric propagation and modeling of a specific scenario FSO channel is required. In this paper, a bi-directional symmetrical Inter-HAP link has been selected and modeled. The Inter-HAP channel model is then investigated via simulations in terms of optical scintillation induced by IRT and in presence of pointing error. The performance characteristic of the model is then quantified in terms of fading statistics from which the Packet Error Probability (PEP) is calculated. Based on the PEP characteristics, we propose suitable ARQ schemes.
منابع مشابه
Incremental adaptive networks implemented by free space optical (FSO) communication
The aim of this paper is to fully analyze the effects of free space optical (FSO) communication links on the estimation performance of the adaptive incremental networks. The FSO links in this paper are described with two turbulence models namely the Log-normal and Gamma-Gamma distributions. In order to investigate the impact of these models we produced the link coefficients using these distribu...
متن کاملImpacts of the Negative-exponential and the K-distribution modeled FSO turbulent links on the theoretical and simulated performance of the distributed diffusion networks
Merging the adaptive networks with the free space optical (FSO) communication technology is a very interesting field of research because by adding the benefits of this technology, the adaptive networks become more efficient, cheap and secure. This is due to the fact that FSO communication uses unregistered visible light bandwidth instead of the overused radio spectrum. However, in spite of all ...
متن کاملPerformance Analysis of Cooperative-ARQ Schemes in Free-Space Optical Communications
We theoretically analyze the performance of free-space optical (FSO) systems using cooperative-ARQ (CARQ), a joint scheme of automatic-repeat-request (ARQ) and cooperative diversity, over atmospheric turbulence channels. We also propose a modified C-ARQ (M-C-ARQ) scheme that allows relay nodes to store a copy of frames for the more efficient response to transmission failure so that both transmi...
متن کاملAnalysis of Automatic Repeat Request Methods for Deep-Space Downlinks
Automatic repeat request (ARQ) methods cannot increase the capacity of a memoryless channel. However, they can be used to decrease the complexity of the channel-coding system to achieve essentially error-free transmission and to reduce link margins when the channel characteristics are poorly predictable. This article considers ARQ methods on a power-limited channel (e.g., the deep-space channel...
متن کاملModeling of RF Waves in Free Space Optical Communication System Under Gamma-Gamma Turbulent Channel Effect
In this paper, an enhancement design of communication system using optical radio frequency (RF) waves in free space optical communication (FSO) system is presented. To our knowledge, it is the first time that the effect of Gamma-Gamma turbulent channel model on the performance of the proposed system is analyzed and simulated. To obtain an optical communication system with good performance and h...
متن کامل